Transcriptome Analysis of a New Peanut Seed Coat Mutant for the Physiological Regulatory Mechanism Involved in Seed Coat Cracking and Pigmentation

نویسندگان

  • Liyun Wan
  • Bei Li
  • Manish K. Pandey
  • Yanshan Wu
  • Yong Lei
  • Liying Yan
  • Xiaofeng Dai
  • Huifang Jiang
  • Juncheng Zhang
  • Guo Wei
  • Rajeev K. Varshney
  • Boshou Liao
چکیده

Seed-coat cracking and undesirable color of seed coat highly affects external appearance and commercial value of peanuts (Arachis hypogaea L.). With an objective to find genetic solution to the above problems, a peanut mutant with cracking and brown colored seed coat (testa) was identified from an EMS treated mutant population and designated as "peanut seed coat crack and brown color mutant line (pscb)." The seed coat weight of the mutant was almost twice of the wild type, and the germination time was significantly shorter than wild type. Further, the mutant had lower level of lignin, anthocyanin, proanthocyanidin content, and highly increased level of melanin content as compared to wild type. Using RNA-Seq, we examined the seed coat transcriptome in three stages of seed development in the wild type and the pscb mutant. The RNA-Seq analysis revealed presence of highly differentially expressed phenylpropanoid and flavonoid pathway genes in all the three seed development stages, especially at 40 days after flowering (DAF40). Also, the expression of polyphenol oxidases and peroxidase were found to be activated significantly especially in the late seed developmental stage. The genome-wide comparative study of the expression profiles revealed 62 differentially expressed genes common across all the three stages. By analyzing the expression patterns and the sequences of the common differentially expressed genes of the three stages, three candidate genes namely c36498_g1 (CCoAOMT1), c40902_g2 (kinesin), and c33560_g1 (MYB3) were identified responsible for seed-coat cracking and brown color phenotype. Therefore, this study not only provided candidate genes but also provided greater insights and molecular genetic control of peanut seed-coat cracking and color variation. The information generated in this study will facilitate further identification of causal gene and diagnostic markers for breeding improved peanut varieties with smooth and desirable seed coat color.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A combined histology and transcriptome analysis unravels novel questions on Medicago truncatula seed coat

The seed coat is involved in the determination of seed quality traits such as seed size, seed composition, seed permeability, and hormonal regulation. Understanding seed coat structure is therefore a prerequisite to deciphering the genetic mechanisms that govern seed coat functions. By combining histological and transcriptomic data analyses, cellular and molecular events occurring during Medica...

متن کامل

Suppressive mechanism of seed coat pigmentation in yellow soybean

In soybean seeds, numerous variations in colors and pigmentation patterns exist, most of which are observed in the seed coat. Patterns of seed coat pigmentation are determined by four alleles (I, i(i), i(k) and i) of the classically defined I locus, which controls the spatial distribution of anthocyanins and proanthocyanidins in the seed coat. Most commercial soybean cultivars produce yellow se...

متن کامل

Inheritance of natural seed-coat cracking in chickpea.

A spontaneous mutant with natural seed-coat cracking, designated "cracked seed-coat mutant (CSM)," was identified in chickpea (Cicer arietinum L.) from an F(2) population of a cross ICRISAT chickpea (ICC) 10301 × ICC 12430. The extent of seed-coat cracking (SCC) varied widely from a minute to several wide cracks. Seed coats showed cracks before seeds were fully developed and the plants had reac...

متن کامل

De Novo Transcriptome of Brassica juncea Seed Coat and Identification of Genes for the Biosynthesis of Flavonoids

Brassica juncea, a worldwide cultivated crop plant, produces seeds of different colors. Seed pigmentation is due to the deposition in endothelial cells of proanthocyanidins (PAs), end products from a branch of flavonoid biosynthetic pathway. To elucidate the gene regulatory network of seed pigmentation in B. juncea, transcriptomes in seed coat of a yellow-seeded inbred line and its brown-seeded...

متن کامل

TWO NEW SPECIES OF ALCEA FROM IRAN

Two new species of Alcea L. (Malvaceae)in Iran, namely, A. iranshahrii from Fars Province and A. mazandaranica from Mazandaran Province are described. Their descriptions and taxonomic relationships are also given. In addition, seed coat microsculpturing is examined using Environmental Scanning Electron Microscope (ESEM). The seed coat patterns observed are fairly uniformed among the genus. It w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016